📝 Math

See MathJax external_link.

Inline Formula

When a0a \ne 0, there are two solutions to (ax^2 + bx + c = 0) and they are x=b±b24ac2a.x = {-b \pm \sqrt{b^2-4ac} \over 2a}.

The Lorenz Equations

x˙=σ(yx)y˙=ρxyxzz˙=βz+xy\begin{align} \dot{x} & = \sigma(y-x) \\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{align}

The Cauchy-Schwarz Inequality

(k=1nakbk) ⁣ ⁣2(k=1nak2)(k=1nbk2)\left( \sum_{k=1}^n a_k b_k \right)^{\!\!2} \leq \left( \sum_{k=1}^n a_k^2 \right) \left( \sum_{k=1}^n b_k^2 \right)

A Cross Product Formula

V1×V2=ijkXuYu0XvYv0\mathbf{V}_1 \times \mathbf{V}_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial X}{\partial u} & \frac{\partial Y}{\partial u} & 0 \\ \frac{\partial X}{\partial v} & \frac{\partial Y}{\partial v} & 0 \\ \end{vmatrix}

The probability of getting (k)\left(k\right) heads when flipping (n)\left(n\right) coins is:

P(E)=(nk)pk(1p)nkP(E) = {n \choose k} p^k (1-p)^{ n-k}

An Identity of Ramanujan

1(ϕ5ϕ)e25π=1+e2π1+e4π1+e6π1+e8π1+\frac{1}{(\sqrt{\phi \sqrt{5}}-\phi) e^{\frac25 \pi}} = 1+\frac{e^{-2\pi}} {1+\frac{e^{-4\pi}} {1+\frac{e^{-6\pi}} {1+\frac{e^{-8\pi}} {1+\ldots} } } }

A Rogers-Ramanujan Identity

1+q2(1q)+q6(1q)(1q2)+=j=01(1q5j+2)(1q5j+3),for q<1.1 + \frac{q^2}{(1-q)}+\frac{q^6}{(1-q)(1-q^2)}+\cdots = \prod_{j=0}^{\infty}\frac{1}{(1-q^{5j+2})(1-q^{5j+3})}, \quad\quad \text{for $|q|<1$}.

Maxwell's Equations

×B1cEt=4πcjE=4πρ×E+1cBt=0B=0\begin{align} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \\ \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{align}